45 research outputs found

    Dynamic routing and spectrum allocation in elastic optical networks

    Get PDF
    Triggered by emerging services such as high-definition video distribution or social networking, the IP traffic volume has been exponentially increasing to date. Furthermore, the traffic growth rate will not stop here due to the day by day technology advances. For example, new hardware advances such as multicore processing, virtualization and network storage will support new generation e-Science and grid applications, requesting data flows of 10 Gb/s up to terabit level. In response to these large capacity and diverse traffic granularity needs of the future Internet, the Elastic Optical Network (EON) architecture has been proposed. By breaking the fixed-grid spectrum allocation limit of conventional Wavelength Division Multiplexing (WDM) networks, EONs increase the flexibility in the connection provisioning. To do so, depending on the traffic volume, an appropriate-sized optical spectrum is allocated to a connection in EONs. Furthermore, unlike the rigid optical channels of conventional WDM networks, a lightpath can expand or contract elastically to meet different bandwidth demands in EONs. In this way, incoming connection requests can be served in a spectrum-efficient manner. This technological advance poses additional challenges on the networking level, specifically on the efficient connection establishment. The Routing and Spectrum Allocation (RSA) problem in elastic optical networks has grabbed a lot of attention lately, putting more emphasis on dynamic network scenarios. There, connection arrival and departure processes are random and the network has to accommodate incoming traffic in real time. Despite all efforts at studying the dynamic RSA problem from different perspectives, there are still some issues which need to be addressed. This thesis is devoted to the study of three still open issues in the EONs literature, 1) dynamic source aggregation of sub-wavelength connections, 2) correlation between traffic granularity and defragmentation periodicity and 3) using spectrum fragmentation to better allocate time-varying connections. The first issue deals with the possibility of aggregation of same source but different destination sub-wavelength connections in EONs, aiming to obtain both transmitter and spectrum usage savings. A novel algorithm for dynamic source aggregation of connections is proposed. Moreover, a novel node architecture enabling the realization of the proposed source aggregation scheme in a cost-effective way is introduced. A considerable improvement in the network spectrum utilization, as well as a significant reduction in the number of necessary transmitters per node is shown. The spectral fragmentation problem in elastic optical networks is addressed with the second issue. A correlation between the optimal (i.e., minimum) spectrum defragmentation periodicity in the network with the granularity of the supported traffic is investigated. A novel algorithm for efficient spectrum defragmentation is proposed, aiming to consolidate the available fiber spectrum as much as possible, while limiting the number of re-allocated active connections. It is shown that the spectral defragmentation periodicity can be effectively configured by having knowledge of the offered traffic granularity. The last issue is about lightpath adaptation under time variable traffic demands in EONs. Specifically, the possibility of utilizing the spectral fragmentation to increase the spectrum allocation capabilities of EONs is explored. In this context, a heuristic Spectrum Allocation (SA) algorithm, which intentionally increases the spectral fragmentation in the network is proposed and validated. In the proposal, the spectrum assigned to each new connection is in the middle of the largest free spectral void over the route, aiming to provide considerable spectral space between adjacent connections. These free spectral spaces are then used to allocate time-varying connections without requiring any lightpath re-allocation.Degut a l'augment de serveis emergent com la distribució de vídeo d'alta definició les xarxes socials, el volum de tràfic IP ha crescut de manera exponencial durant els darrers temps. S'espera que aquest creixement no s'aturi sinó que continui de manera imparable degut als constants avenços tecnològics. Alguns exemples d’això poden ser els processadors multi-nucli, la virtualització o el "cloud computing" que donaran suport a una nova generació de e-Science i d'aplicacions Grid per les quals caldran flux de dades des de 10 Gb/s fins al Terabit per segon. La conseqüència esperable és que els operadors de xarxes de telecomunicacions requeriran una nova generació de transport òptic en el futur proper, per donar servei a aquests grans i heterogenis volums de trafic d'una manera econòmicament eficient i escalable. Com a resposta a les creixents necessitats de capacitat i de diferents granularitats de tràfic de la Internet del Futur s'ha proposat l'arquitectura coneguda com "Elastic Optical Network" (EON). Trencant el rígid entramat de les xarxes WDM tradicionals, on s'ha de reservar tot un canal òptic per a cada comunicació, mitjançant les EON s'aconsegueix incrementar la flexibilitat en l'aprovisionament de connexions. per fer-ho, depenent del volum de tràfic s'assigna la quantitat adient de l'espectre òptic a cada connexió. I, anant encara un pas més enllà, per desfer la rigidesa dels canals convencionals de les xarxes amb multiplexació per divisió en longitud d'ona (WDM), les connexions òptiques en les EON poden expandir-se o contraure's de manera elàstica segons els requeriments d'ample de banda en cada moment. D'aquesta manera, les peticions de connexió que arriben poden ésser servides de manera eficient pel que fa a l'espectre que utilitzen. Aquest avenç tecnològic implica però alguns reptes a nivell de xarxa, especialment pel que fa a l'establiment eficient de les connexions. De manera similar a com succeeix en les xarxes WDM, una connexió ha d'ocupar la mateixa part de l'espectre en tots els links que la conformen, acomplint el principi de "continuïtat en l'espectre". A més a més, tot l'ample de banda de la connexió ha d'estar assignat de manera adjacent, acomplint el principi de "contigüitat en l'espectre". Per aconseguir aquests objectius, el problema de l'encaminament i assignació de l'espectre (RSA) ha merescut una gran atenció dels investigadors en els darrers anys, amb especial èmfasi a escenaris dinàmics, és a dir, en la fase d’operació de la xarxa. En aquest cas, els processos d'arribada i mort de les connexions són aleatoris i la xarxa ha d'acomodar en temps real el tràfic ofert. Tot i els grans esforços dedicats a aquest tema, queden encara alguns punts a resoldre. Aquesta Tesi està dedicada a alguns d'aquests temes oberts en l'àmbit de les xarxes EON: 1) l’agregació dinàmica de connexions de granularitat inferior a la longitud d'ona, 2) la correlació entre la granularitat del tràfic i les polítiques de desfragmentació de l'espectre, i, 3) utilitzar la fragmentació espectral per a una millor assignació de connexions d'ample de banda canviant en el temps. El primer tòpic analitza la possibilitat d'agregar connexions originades a la mateixa font però amb diferents destinacions dins d'una EON, amb l'objectiu d'estalviar recursos tant pel que fa a nombre d'equips transmissor utilitzats com a l'espectre utilitzat. S'ha proposat un nou algorisme que millora ambdós paràmetres, així com una arquitectura pels nodes de la xarxa que permet utilitzar l'algorisme d’agregació proposat de manera eficient des del punt de vista del cost. S'aconsegueix una considerable millora pel que fa a la utilització de l'espectre a més d'una significativa reducció en el nombre de transmissors per node que es requereixen. El problema de la fragmentació espectral en les EONs s'ataca en la segona aportació d'aquesta Tesi. S'ha aconseguit demostrar la correlació entre l’òptima (és a dir mínima) periodicitat de les accions de desfragmentació i la granularitat del tràfic suportat. S'ha proposat un nou algorisme per a una desfragmentació eficient, l'objectiu del qual és consolidar l'espectre disponible en les fibres tan com sigui possible, al mateix temps que es redueix el nombre de connexions que has de ser reubicades en la xarxa. Es demostra que, en una EON, es pot configurar de manera òptima la periodicitat de les desfragmentacions si es coneix la granularitat de les connexions a transportar. Finalment, en el tercer gran apartat de la Tesi, s'estudia la possibilitat d'utilitzar la fragmentació espectral en les EON per a una millor assignació dels recursos quan el tràfic és variant en el temps. En aquest context, s'ha proposat i validat un algorisme d’assignació de l'espectre (SA) que incrementa de manera intencionada la fragmentació espectral de la xarxa. En aquesta proposta, l'espectre assignat a cada nova connexi_o s'ubica al bell mig del buit espectral més gran que es troba en tota la ruta, amb l'objectiu de deixar tan espai com sigui possible entre les diferents connexions. Aquest espai és després utilitzat per a connexions que requereixen, al llarg de la seva existència, més espectre del que se'ls ha assignat inicialment (incrementen el seu ample de banda). Els resultats obtinguts mitjançant simulacions mostren significants millores en termes de Probabilitat de Bloqueig (BP) en la xarxa quan s'utilitza l'algorisme proposat. Després d'una introducció a la Tesi, el Capítol 2 ofereix una revisió de l’evolució de les xarxes òptiques de transport, tot introduint el concepte de xarxa òptica elàstica (EON). El Capítol 3 se centra en l'estudi dels mètodes d'encaminament i assignació de longitud d'ona en xarxes WDM convencionals, i la seva evolució cap al problema de l’assignació d'espectre (RSA) en EONs. El Capítol 4 detalla els estudis i les contribucions fetes en el tema d’agregació de connexions de granularitat inferior a la longitud d'ona en EONs. L'algorisme proposat, així com l'arquitectura de node que permet aplicar-lo es presenten en aquest Capítol. El problema de la fragmentació espectral en EONs i llurs solucions es revisen a fons en el Capítol 5. La correlació entre la periodicitat de les desfragmentacions espectrals i la granularitat del tràfic ofert s'estudien aquí. El Capítol 6 detalla el problema de servir connexions variants en el temps en EONs. Algunes polítiques proposades fins ara es revisen, i tot seguit se'n proposa una que, en certs aspectes, millora les prèvies. Finalment, cal destacar que aquest treball ha rebut el suport del Govern de la Generalitat de Catalunya, a través d'una beca FI-AGAUR, i que s'ha realitzat en el marc del projecte del Ministerio de Educación Ciencia y Deporte espanyol ELASTIC (TEC2011-27310).Debido al aumento de servicios emergentes como la distribución de video de alta definición o las redes sociales, el volumen de tráfico IP ha crecido de manera exponencial durante los últimos tiempos. Se espera que este crecimiento no se pare sino que continúe de manera imparable debido a los constantes adelantos tecnológicos. Algunos ejemplos de esto pueden ser los procesadores multi-núcleo, la virtualización o el "cloud computing" que darán servicio a una nueva generación de aplicaciones de e-Science y de Grid para las cuáles serán necesarios flujos de datos desde 10 Gb/s hasta Terabits por segundo. La consecuencia esperable es que los operadores de redes de telecomunicaciones requerirán una nueva generación de transporte óptico en el futuro cercano, para dar servicio a estos grandes y heterogéneos volúmenes de tráfico de una manera económicamente eficiente y escalable. Como respuesta a las crecientes necesidades de capacidad y de diferentes granularidades de tráfico de la Internet del Futuro, se ha propuesto la arquitectura conocida como "Elastic Optical Network" (EON). Rompiendo el rígido entramado de las redes con multiplexación por división en longitud de onda (WDM) tradicionales, donde se tiene que reservar todo un canal óptico para cada comunicación, mediante las EON se consigue incrementar la flexibilidad en el aprovisionamiento de conexiones. Para hacerlo, dependiendo del volumen de tráfico se asigna la cantidad adecuada del espectro óptico a cada conexión. Y, yendo todavía un paso más allá, para deshacer la rigidez de los canales convencionales de las redes WDM, las conexiones ópticas en las EON pueden expandirse o contraerse de manera elástica según los requerimientos de ancho de banda en cada momento. De este modo, las peticiones de conexión que llegan pueden ser servidas de manera eficiente en cuanto al espectro que utilizan. Este adelanto tecnológico implica sin embargo algunos retos a nivel de red, especialmente en lo que se refiere al establecimiento eficiente de las conexiones. De manera similar a como sucede en las redes WDM, una conexión debe ocupar la misma parte del espectro en todos los links que la conforman, cumpliendo el principio de "continuidad espectral". Además, todo el ancho de banda de la conexión tiene que estar asignado de manera adyacente, cumpliendo el principio de "contigüidad espectral". Para conseguir estos objetivos, el problema del encaminamiento y asignación del espectro (RSA) ha merecido una gran atención de los investigadores en los últimos años, con especial énfasis en escenarios dinámicos, es decir, en la fase de operación de la red. En este caso, los procesos de llegada y finalización de las conexiones son aleatorios y la red tiene que acomodar en tiempo real el tráfico ofrecido. A pesar de los grandes esfuerzos dedicados a este tema, quedan todavía algunos puntos a resolver. Esta Tesis está dedicada a algunos de estos temas abiertos en el ámbito de las redes EON: 1) la agregación dinámica de conexiones de granularidad inferior a la longitud de onda, 2) la correlación entre la granularidad del tráfico y las políticas de desfragmentación del espectro, y, 3) utilizar la fragmentación espectral para una mejor asignación de conexiones de ancho de banda variante en el tiempo. El primer tópico analiza la posibilidad de agregar conexiones originadas en la misma fuente pero con diferentes destinos dentro de una EON, con el objetivo de ahorrar recursos tanto en cuanto a número de equipos transmisores utilizados como en el espectro utilizado. Se ha propuesto un nuevo algoritmo que mejora ambos parámetros, así como una arquitectura para los nodos de la red que permite utilizar el algoritmo de agregación propuesto de manera eficiente desde el punto de vista del coste. Se consigue una considerable mejora en cuanto a la utilización del espectro además de una significativa reducción en el número de trasmisores por nodo que se requieren. El problema de la fragmentación espectral en las EONs se ataca en la segunda aportación de esta Tesis. Se ha conseguido demostrar la correlación entre la óptima (es decir, mínima) periodicidad de las acciones de desfragmentación y la granularidad del tráfico soportado. Se ha propuesto un nuevo algoritmo para una desfragmentación eficiente, el objetivo del cual es consolidar el espectro disponible en las fibras tanto como sea posible, al mismo tiempo que se reduce el número de conexiones que deben ser reubicadas en la red. Se demuestra que, en una EON, se puede configurar de manera óptima la periodicidad de las desfragmentaciones si se conoce la granularidad de las conexiones a transportar. Finalmente, en el tercer gran apartado de la Tesis, se estudia la posibilidad de utilizar la fragmentación espectral en las EON para una mejor asignación de los recursos cuando el tráfico es variante en el tiempo. En este contexto, se ha propuesto y validado un algoritmo de asignación del espectro (SA) que incrementa de manera intencionada la fragmentación espectral de la red. En esta propuesta, el espectro asignado a cada nueva conexión se ubica en medio del vacío espectral más grande que se encuentra en toda la ruta, con el objetivo de dejar tanto espacio como sea posible entre las diferentes conexiones. Este espacio es después utilizado para conexiones que requieren, a lo largo de su existencia, más espectro del que se les ha asignado inicialmente (incrementan su ancho de banda). Los resultados obtenidos mediante simulaciones muestran significantes mejoras en términos de Probabilidad de Bloqueo (BP) de la red cuando se utiliza el algoritmo propuesto. Después de una introducción a la Tesis, el Capitulo 2 ofrece una revisión de la evolución delas redes ópticas de transporte, introduciendo el concepto de red óptica elástica (EON). El Capítulo 3 se centra en el estudio de los métodos de encaminamiento y asignación de longitud de onda en redes WDM convencionales, y su evolución hacia el problema de la asignación de espectro (RSA) en EONs. El Capítulo 4 detalla los estudios y las contribuciones hechas en el tema de agregación de conexiones de granularidad inferior a la longitud de onda en EONs. El algoritmo propuesto, así como la arquitectura de nodo que permite aplicarlo, se presentan en este Capitulo. El problema de la fragmentación espectral en las EONs y sus soluciones se revisan a fondo en el Capitulo 5. La correlación entre la periodicidad de las desfragmentaciones espectrales y la granularidad del tráfico ofrecido se estudian aquí. El Capitulo 6 detalla el problema de servir conexiones variantes en el tiempo en EONs. Algunas políticas propuestas hasta ahora se han revisado, y a continuación se propone una que, en algunos aspectos, mejora las previamente publicadas. Finalmente, hay que destacar que este trabajo ha recibido el apoyo del Gobierno de la Generalitat de Catalunya, a través de una beca FI-AGAUR, y que se ha realizado en el marco del proyecto ELASTIC (*TEC2011-27310), del Ministerio de Educación Ciencia y Deporte Español

    System architecture and deployment scenarios for SESAME: small cEllS coordinAtion for Multi-tenancy and Edge services

    Get PDF
    The surge of the Internet traffic with exabytes of data flowing over operators’ mobile networks has created the need to rethink the paradigms behind the design of the mobile network architecture. The inadequacy of the 4G UMTS Long term Evolution (LTE) and even of its advanced version LTE-A is evident, considering that the traffic will be extremely heterogeneous in the near future and ranging from 4K resolution TV to machine-type communications. To keep up with these changes, academia, industries and EU institutions have now engaged in the quest for new 5G technology. In this paper we present the innovative system design, concepts and visions developed by the 5G PPP H2020 project SESAME (Small cEllS coordinAtion for Multi-tenancy and Edge services). The innovation of SESAME is manifold: i) combine the key 5G small cells with cloud technology, ii) promote and develop the concept of Small Cells-as-a-Service (SCaaS), iii) bring computing and storage power at the mobile network edge through the development of non-x86 ARM technology enabled micro-servers, and iv) address a large number of scenarios and use cases applying mobile edge computing

    QoE-Oriented Mobile Edge Service Management Leveraging SDN and NFV

    Get PDF
    5G envisages a "hyperconnected society" where trillions of diverse entities could communicate with each other anywhere and at any time, some of which will demand extremely challenging performance requirements such as submillisecond low latency. Mobile Edge Computing (MEC) concept where application computing resources are deployed at the edge of the mobile network in proximity of an end user is a promising solution to improve quality of online experience. To make MEC more flexible and cost-effective Network Functions Virtualisation (NFV) and Software-Defined Networking (SDN) technologies are widely adopted. It leads to significant CAPEX and OPEX reduction with the help of a joint radio-cloud management and orchestration logic. In this paper we discuss and develop a reference architecture for the orchestration and management of the MEC ecosystem. Along with the lifecycle management flows of MEC services, indicating the interactions among the functional modules inside the Orchestrator and with external elements, QoS management with a focus on the channel state information technique is presented.The research leading to these results has been supported by the EU funded H2020 5G-PPP project SESAME under the Grant Agreement no. 671596 and National Spanish Projects QoEverage (no. TEC2013-46766-R) and ONOFRE (no. TEC2014-53071-C3-1-P)

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    CARAMEL: results on a secure architecture for connected and autonomous vehicles detecting GPS spoofing attacks

    Get PDF
    The main goal of the H2020-CARAMEL project is to address the cybersecurity gaps introduced by the new technological domains adopted by modern vehicles applying, among others, advanced Artificial Intelligence and Machine Learning techniques. As a result, CARAMEL enhances the protection against threats related to automated driving, smart charging of Electric Vehicles, and communication among vehicles or between vehicles and the roadside infrastructure. This work focuses on the latter and presents the CARAMEL architecture aiming at assessing the integrity of the information transmitted by vehicles, as well as at improving the security and privacy of communication for connected and autonomous driving. The proposed architecture includes: (1) multi-radio access technology capabilities, with simultaneous 802.11p and LTE-Uu support, enabled by the connectivity infrastructure; (2) a MEC platform, where, among others, algorithms for detecting attacks are implemented; (3) an intelligent On-Board Unit with anti-hacking features inside the vehicle; (4) a Public Key Infrastructure that validates in real-time the integrity of vehicle’s data transmissions. As an indicative application, the interaction between the entities of the CARAMEL architecture is showcased in case of a GPS spoofing attack scenario. Adopted attack detection techniques exploit robust in-vehicle and cooperative approaches that do not rely on encrypted GPS signals, but only on measurements available in the CARAMEL architecture.This work was supported by the European Union’s H2020 research and innovation programme under the CARAMEL project (Grant agreement No. 833611). The work of Christian Vitale, Christos Laoudias and Georgios Ellinas was also supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 739551 (KIOS CoE) and from the Republic of Cyprus through the Directorate General for European Programmes, Coordination, and Development. The work of Jordi Casademont and Pouria Sayyad Khodashenas was also supported by FEDER and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya through projects Fem IoT and SGR 2017-00376 and by the ERDFPeer ReviewedPostprint (author's final draft

    Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN

    Get PDF
    This paper analyzes current standardization situation of 5G and the role network softwarization plays in order to address the challenges the new generation of mobile networks must face. This paper surveys recent documentation from the main stakeholders to pick out the use cases, scenarios and emerging vertical sectors that will be enabled by 5G technologies, and to identify future high-level service requirements. Driven by those service requirements 5G systems will support diverse radio access technology scenarios, meet end-to-end user experienced requirements and provide capability of flexible network deployment and efficient operations. Then, based on the identified requirements, the paper overviews the main 5G technology trends and design principles to address them. In particular, the paper emphasizes the role played by three main technologies, namely SDN, NFV and MEC, and analyzes the main open issues of these technologies in relation to 5G.Preprin

    Effect of charge carriers and excitons mobility on transport in an organic solar cell

    No full text
    An organic solar cell model is developed that consists of both excitonic and classical bipolar aspects of solar cells. In order to be compatible with the principle of detailed balance theory we have imported the photon recycling term in our equations. As a result we connected the Shockley-Queisser (SQ) theory to the classical diode theory. This model for excitonic and classical bipolar solar cells can describes the combined transport and interaction of electrons, holes and excitons. For high mobilities our model reproduces the Shockley Queisser efficiency limit. We show how varying the respective mobilities of the different species changes the operation mode of the solar cell path between excitonic and bipolar.QC 20201007</p

    The role of Edge Computing in future 5G mobile networks: concept and challenges

    No full text
    Future 5G technologies are expected to overcome the challenges of next generation networks aiming to tackle the novel and manifold business requirements associated to different vertical sectors. Extraordinarily high speeds and capacity, multi-tenancy, heterogeneous technologies convergence, on-demand service-oriented resource allocation or even coordinated, automated management of resources are only few examples of the complex demands 5G aims to undertake. The shift from centralised cloud computing-based services towards data processing at the edge is becoming one of the fundamental components envisaged to enable those future 5G technologies. Edge computing is focused on pushing processing to the network edge where all the actual interactions in the access networks take place and the critical low-latency processing occurs. Combination of Network Functions Virtualisation (NFV) and edge computing technologies and mechanisms provides a wide range of novel opportunities for added-value service provisioning covering different features required in future access networks, such as Quality of Service (QoS), security, multi-tenancy, and low-latency. This chapter provides an overview of edge computing technologies, from supporting heterogeneous infrastructure up to service provisioning methodologies related to the application-specific requirements. It describes the role of edge computing and NFV in future 5G mobile networks. It also provides an insight into how edge computing can potentially facilitate and expedite provisioning of security in 5G networks. The manuscript analyses the role of the networking resources in edge computing-based provisioning, where the demands of 5G mobile networks are to be met with wireless networking technologies, which in essence are different to wired technologies present in core data centres. Initial results obtained from the evaluations of wireless fog networking backhauls are presented and the challenges ahead of the actual implementation of those technologies are also analysed in the chapter

    On the Need of Joint Bandwidth and NFV Resource Orchestration: a Realistic 5G Access Network Use Case

    No full text
    5G envisages a "hyper-connected society" where an enormous number of devices are inter-connected anywhere and at any time. Cloud-enabled radio access networks (RAN) where intelligence is placed in conjunction with the radio heads at the proximity of end users is a promising solution to fulfil the 5G expectations of sub-millisecond latency, huge traffic volumes and higher data rates. Network Functions Virtualization (NFV) and Software Defined Networking (SDN) developments enable end users to access advanced features such as configurability, automation, scalability, improved resource utilization and multi tenancy over the cloud-enabled RANs. Management and orchestration techniques are the ultimate factor that determine the effectiveness of the novel SDN/NFV features being introduced. Our focus in this study is the resource allocation in a realistic cloud-enabled RAN, taking into account the dynamics of ~100,000 persons movement in a crowded event, i.e. a football match. The proposed solution jointly orchestrates NFV and bandwidth resources, as one resource affects the other. Simulation results clearly verify the benefits of the proposed solution over traditional disjoint schemes
    corecore